威尼斯人娱乐城澳门赌博-威尼斯人娱乐城线上赌博

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

“數通古今,學貫中外”學術講座第六十五期預告【王鳳雨教授】

供稿: 曹鵬(數學與統計學院) 編輯: 數學學院 高冰 時間:2014-04-14

時間:4月15日(周二)下午3:30至4:30

地點:研究生樓103

報告人:王鳳雨教授:北京師范大學教授

Title: Integration by Parts Formula and Shift Harnack Inequality for Stochastic Equations

Abstract: A new coupling argument is introduced to establish Driver's integration by parts formulaand shift Harnack inequality. Unlike known coupling methods where two marginal processes withdifferent starting points are constructed to move together as soon as possible, for the new-type coupling the two marginal processes start from the same point but their difference is aimed to reach a fixed quantity at a given time. Besides the integration by parts formula, the new coupling method is also efficient to imply the shift Harnack inequality. Differently from known Harnack inequalities where the values of a reference function at different points are compared, in the shift Harnack inequality the reference function, rather than the initial point, is shifted. A number of applications of the integration by parts and shift Harnack inequality are presented. The general results are illustrated by some concrete models including the stochastic Hamiltonian system where the associated diffusion process can be highly degenerate, delayed SDEs, and semi-linear SPDEs.
 

老k百家乐游戏| 杨公24山向水法吉凶断| 百家乐官网开发公司| 百家乐路单打法| bet365吧| 租房做生意如何注意风水问题| 卓达太阳城希望之洲| 菲律宾百家乐官网赌场娱乐网规则| 青岛人家棋牌室| 百家乐香港六合彩| 大世界百家乐官网娱乐城| 新加坡百家乐规则| 2016哪个属相做生意吉利| 博彩乐透乐| 百家乐娱乐网代理佣金| 如何看百家乐官网的路纸| 威尼斯人娱乐网赌| 百家乐官网牌具公司| 元游视频棋牌游戏| 百家乐视频中国象棋| 百家乐官网桌台布| 大发888官方中文网址| 王牌国际| 百家乐翻天超清| 索雷尔百家乐官网的玩法技巧和规则 | 靖西县| 百家乐利来| 火命与金命做生意 | 老虎百家乐的玩法技巧和规则| 单双和百家乐官网游戏机厂家| 大发888谨慎心态| 百家乐小77论坛| 太阳城百家乐官网杀猪吗| 大嘴棋牌手机版| 威尼斯人娱乐平台注册| 澳门百家乐娱乐注册| 百家乐官网路单破| 百家乐官网投注技巧| 闵行区| 武城县| 华人棋牌游戏|