威尼斯人娱乐城澳门赌博-威尼斯人娱乐城线上赌博

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

太阳城管理| 威尼斯人娱乐客户端| 网络百家乐官网输了很多钱| 百家乐单注技巧| 百家乐7人桌布| 新朝代百家乐官网开户网站| 大发888真人真钱游戏| 百家乐官网赌场合作| 大发888为什么进不去| 百家乐官网顶尖高手| 百家乐专用| 百家乐官网一起多少张牌| 百家乐清零| 百家乐官网最稳妥的打法| 月亮城百家乐的玩法技巧和规则| 百家乐官网投注方法| 大发888开户大发娱乐权威吗| 风水24向吉项| 百家乐官网管理启发书| 百家乐软件代理打| 高尔夫百家乐官网的玩法技巧和规则 | 百家乐最新赌王| 和林格尔县| 百家乐官网注册就送| 大发888 代充| 百家乐数学规律| 网上百家乐官网骗人的吗| 老虎机破解器| 罗盘24山图| 网上的百家乐官网怎么才能赚钱| 赌博网站| 大发888娱乐城dknmwd| 百家乐是咋玩法| 百家乐官网生活馆| 虎林市| 顶级赌场连环夺宝下注有什么窍门| 百家乐人生信条漫谈| 百家乐官网皇室百家乐官网的玩法技巧和规则| 济南市| 鸿盛博娱乐| 大发888娱乐客户端真钱|